SIGNIFICANCE OF WOOD IN FORMATION OF TRADITIONAL TURKISH ARCHITECTURE AND EASTERN BLACK SEA EXAMPLE WOOD IN TRADITIONAL SETTLEMENTS

Three types of building materials, wood, stone and soil, are principally used in materialization of the building units constituting the traditional settlements in Turkey. Rich class diversifications of these materials entailed high-quality results making human life meaningful such as interesting detail solutions and architectural elements differing on the basis of regions, aesthetic, comfort and sound space utilization.

Various types of wood and stone structure materials find various fields of use on the basis of geographical conditions, social, economic and cultural structures, space dimensions and high-quality living environment (comfort) varying regionally. As to types of soil material, that is hardpan type or types obtained by mixing with straw and drying or firing, these are used in walls, floorings and roofs. A comparison of material choice in traditional buildings throughout Turkey shows that 75 % wood, 15 % stone and 10 % mud-brick and bricks are used in building structures, building elements, dividers, floorings, ceiling and roof utilizations.

Wooden structure tradition is widespread in Eastern Black Sea, Western Black Sea, Marmara, Aegean, Mediterranean regions and in the northern parts of Central Anatolia. Besides, it is applied in part in northern parts of Eastern Anatolia. (Photograph)

(Photograph) TOPLUCA Çamlıhemşin - RİZE
Stone building tradition is widespread in a great part of South-eastern Anatolian region and Eastern Anatolia, and in some settlements to the east of Central Anatolia.

Mud-brick building tradition is widespread in a great part of Central Anatolian region, and to the west of Eastern Anatolia.

Wood is common in the horizontal or vertical reinforcements, floor and ceiling beams, roof installations, flooring and ceiling covers. Besides, all of the building materials used in the roof coverings, claddings, oriel windows, windows, doors, and closets are wooden. Couches, sofa sets, floor tables used in kitchen, pots and pans are generally wooden. Even spoons made of box-tree, food mixers and lathed pots are all wooden in the Black sea region, and partially wooden in other regions.

It is seen that wood material is used in 90% of traditional houses in Turkey, finishing and decoration included. We can also see that the trees on Black Sea, Marmara, Aegean and Mediterranean coasts, that is, trees patching off up to 1000 meters of altitude, and needle-leaf trees up to 2000 meters of altitude, were utilized very well in house construction in the past.

Also there is the joint use of wooden, stone and soil materials in houses and other structures. Such mixed building structures should also be included along with other building systems.
Classification in terms of building material and structure:

1. **Wooden structures**: These consist of two types: block and carcass.
   a) While horizontal stowing of unprocessed logs is called "log block" system, the system of stowing processed wooden materials is defined as "wood block". *(Photograph 3)*

   ![Photograph 3](image)

   *(Photograph 3) YAVUZKÖY Şavşat - ARTVIN*

   b) Carcass wooden structures: these vary according to the types of filling.
      "Wood-block filled carcass system", "Stone filled carcass system", "Nogging (soil) filled wooden carcass system", "brick-filled wooden carcass system"

2. **Stone structures**: These consist of 3 types of only block.
   a) Rubble block structures: Mined stone is used with slight corrections. *(Photograph 4)*
   b) Smoothed stone structures: Stones corrected with metal hammers. *(Photograph 5)*
   c) Cut stone structures: The stone is used having acquired a smooth surface. *(Photograph 6)*

3. **Soil structures**: consists of 2 types of only block:
   a) Mud-brick structures: Structures in which straw is mixed into soil with adhesive properties, then molded and sun-dried to be used therein. *(Photograph 7)*
   b) Brick block structures: Structures where fired clay soil types are used.
(Photograph 4) ÇUNGUŞ DIYARBAKIR

(Photograph 5) MUĞLA

(Photograph 6) MARDIN
4. Structures with mixed wood and stone:
   a) Structures where block stone and block wood are jointly used. (Photograph 8)
   b) Structures where block stone and carcass wood are jointly used. (Photograph 9)
5. Structures with mixed wood and mud-brick:
   a) Structures where block mud-brick and block wood are used jointly.
   b) Structures where block mud-brick and carcass wood are used together. *(Photograph 10)*

*(Photograph 10) Divri – SHVAS*

6. Wooden, stone and mud-brick mixed structures:
   a) Wooden block structures on stone wall with clay mortar. *(Photograph 11)*
   b) Wooden carcass structures on stone wall with clay mortar.

*(Photograph 11) Akseki ANTALYA*
As may be seen, intense use of wood in building systems made of wood-, stone- and soil-based building materials is inevitable in traditional architecture. Although there may be different rates of use of the materials in all of our settlement areas such as cities and towns, this rule still remains valid.

WOODEN IDENTITY OF EASTERN BLACK SEA HOUSES

Local architecture of Eastern Black Sea is determined by the harmony of living necessities of the local people and the possibilities to be used in meeting such needs, like other districts. Eastern Black Sea architecture is a result of the building art and settlement understanding due to different natural conditions formed by a society with a different social culture compared to other localities. It is perhaps the most characteristic locality of Anatolian architecture in terms of the achievements reached with their peculiar inventions and solutions in wood-based building art. In presentation of the local architecture, I think, it would be better to first talk about analysis of formation of the settlement character, understanding of house and annexes within the family, revelation of space organization, and then to go in detail toward the properties of building art. (Photograph 12)
Natural Environment:

As known, the land structure of the region only allows moist winds from the west and northwest because the region is isolated from its south, east and north beyond our borders because of the youngest and most hilly mountain range of our country.

The fact that the cold winds from the north are screened and moist winds from the west cannot go beyond the mountain range resulted in a rainy and temperate climate in the region. This caused going widespread of very rich flora, even citrus, particularly on the coastline. Forest areas consisting of varieties of pine, spruce, chestnut, hornbeam, pelit, juniper etc. end in only pine varieties at highlands with an elevation of 2000-2500 meters. The fact that it is the rainiest region of our country caused erosion of the beds of the brooks and streams flowing steeply to the coast and thus formation of deep valleys at slopes facing the sea of the Eastern Black Sea mountain ranges. Such rough and active topography brought a different character to the locality. Therefore, the people of the region strived constantly to turn the negative effects of nature to their advantage to be able to survive. Rough grounds, rainy climatic conditions and vegetations affected settlement of houses on the land, and a peculiar settlement pattern and architecture occurred. (Photograph 13)

Settlement:

Settlement character of the Eastern Black Sea region has two patterns as the coastline and midlands.

a) Midland settlements: Midland settlements are generally by the valley slopes. There is harmony between settlement and topography. Lands which are highly steep in a way not to allow passage as well as plain and slightly sloped areas suitable for agriculture were left available. Settlements were made in small and scattered quarters by the water heads and slopes constituting the intersection of the campaigns suitable for agriculture seeing the sun and rough mountainous areas. (Photograph 14)
Midland settlements come to an end and temporary settlements called “mezra (fields)” start as the elevation increases. Houses are simpler and smaller in temporary settlements at an elevation of 1000-2000 meters. Such wooden houses named “Bagen” and “Kaliv” are used from time to time until the crop is reaped for the purpose of protection of the farms far away from the village from animals such as wild boar, bear and other animals, or for accommodation at the time of going to and returning from highlands.

Therefore, in highland houses, more pain is taken over places where animals are bred as compared to spaces allocated to people. The building details of the highland houses are rougher and simpler than village houses. Although there is a certain proportion of arbitrariness in settlement of the houses on the land, principles of dominance to pastures, orientation toward good view, and grouping were complied with. (Photograph 15)
b) Coastline settlements: the primary reason for the scattered settlement is that each family owns lands from 3000 - 5000 square meters to 150,000 – 200,000 square meters in area, and their wish to put their house on their own land. Another reason is water, which necessitates collective settlement in other regions of Anatolia, is either within or near each land in Eastern Black Sea region. However, the fact that water possibilities reduce as elevation increases higher toward midlands results in an intense settlement pattern gathered around heads of water.

The house consists of the settlement unit for accommodation of the family, “Bagen (hayloft)” where the winter food for animals are kept, “pole-elevated (Serender)” and granaries where food for winter for people are stored, and at some houses, there are small wooden supplementary structures near the house such as furnace and separated water closet. The fact that people living on production of nuts, corn, fruit and vegetable generally are engaged in animal breeding in midlands and in fishery on the coastline requires structures such as stable and boathouse among supplementary units near the houses.

(Photograph 16) FINDIKLI ÇAĞLAYAN - RIZE

Material and wooden building structure:

The most important of the possibilities provided to the locality by the climatic conditions are water and vegetation. These two indispensable requirements of survival are abundant in Eastern Black Sea. Since wood is a easily-found and processed building material, it took precedence in preference. Conditions set the topography, climate and flora and other local materials brought harmony to architecture thanks to different uses of wood.
Although there is rich flora in the forests, utilization of strong varieties of pine, spruce, beech, chestnut, juniper is widespread. Chestnut on the coastline, and pine in the midlands, are the most preferred building material because they can be obtained from nearby. Furthermore, rare hard tree varieties such as juniper, walnut, oak and elm are also present at the houses of wealthy families. The secondary building material to wood because of its rareness is stone. Besides, fired soil like bricks, tiles is used on the roofs and in chimneys, particularly on the coastline.

There are two approaches in classification of the structures in Eastern Black Sea as per materials used, which are “according to the structure formed by shaping of the material used” and “according to the form of filler in wall formation”.

a) Classification of wooden structures according to structure:

Log block: Generally applied in single-storey supplementary buildings of settlement units and highland houses. Made of wood material from foundation to roof cover. Highland houses are established by horizontal stacking of cylindrical logs processed with axe. Interlocking joint detail named “black neck” is applied to the corners at the locality. Even the internal intermediary partitions are rough processed like external walls. While the horizontal wooden bearing elements placed one on top of another are jointed to the external wall elements, their ends are left outside. Such practice for increased strength ensures reflection of the space order of the building on the façade. Windows consist of holes obtained by notching of the horizontal logs. (Photograph 17)
Cut wooden block: Upper floors in old examples of the in generally two-storey village and town houses are constructed using cut wooden construction system. Semi-buried ground floors are erected using thick stone walls. It is seen that the thick woods obtained by cutting with axe are used as load-bearing elements in first examples. Afterwards, upon use of big saws used by two people, such thick parts were thinned. Corners were more sensitively processed and combined with “neck joint” details. Window and door spaces were formed using vertical elements holding the horizontal bearing-elements of the structure. Structure leaves and window lids were fixed to such vertical elements using wrought iron hinges. (Photograph 18)

(Photograph 18) İnebolu - KASTAMONU

Timber framing (carcass): The main and intermediary bearing elements of the structures are placed vertically contrary to that of the block system. First, the foundation prepared with a stone wall is elevated at the side with low elevation in a way to form a partial basement, and thick and wide ground sleepers prepared smoothly are jointed with “neck” or “worm neck” joints at corners and placed horizontally. Corner joints, “neck joint” details that can be fixed in a way not to allow each other at both directions are defined as “worm neck” in the region. Corner and intermediary studs are erected at predetermined points of the ground sleepers. After horizontal beams are placed to the pole heads, the top of the structure is covered with a roof structure with three or four angles. (Photograph 19)
b) Classification of wooden carcass structures according to forms of wall fillers:

Wooden carcass building structure is known as “framing system” in the locality. The surface cavities on the outer wall of such building system are filled with wooden or stone material. The houses with these forms of filling at the locality are defined as “block wooden infilling”, “cell infilling”, “amulet infilling”, and “çakatura”.

Block wooden infilling: This is the façade system which fills the cavity between the horizontal and vertical wooden structure elements with horizontal block wooden elements. The bearing building elements and the infilling elements are applied together in this system. Because, the block woods stacked on top of each other horizontally are made rigid by fixing them into the grooves opening to the vertical bearing elements. Thus, the strength of the building against loads and the wind is increased. Vertical bearers at window and door hollows also act as a frame where cover and leaves are fixed. Outer surfaces consisting of horizontal wooden elements are thicker as compared to thin inner surfaces. (Photograph 20)
Cell infilling: The “cell infilling” technique used to be applied in coast settlements in Eastern Black Sea region, which left its place for “amulet infilling” and “çakatür”. The need for “cell infilling” façade technique after “block wooden infilling” results from intensified farm acquisition in forest areas, and a decrease in the varieties of big trees. The idea of utilizing the stone in the area for fillings in old houses dependent only on wooden material was brought about as a result of such necessity. Joint details are also utilized in formation of the façade. The structure of the cell infilling surface is made up with cavities formed at dimensions of 17 cm x 22 cm or 20 cm x 25 cm with small sized wooden parts. Flat brook stones prepared to be fit into such square or rectangle boxes are then placed. (*Photograph 21*)

(*Photograph 21*) an example of cell infilling timber structure  (*Designed by Prof. Cengiz ERUZUN*)

(*Photograph 22*) completed state of cell infilling timber structure
The small cavities between the wooden bearing elements and stone filling elements are filled using lime mortar. Window cavities are formed by living three cells in horizontal plane and five cells in vertical plane empty. Such hollow is used as the window frame in which window leaves are placed. In addition, some of the cells are intentionally left empty in spaces such as water closet, roof, attic which require ventilation.

The color of stone and wooden material in cell infilling façade composition, excellence of details revealed with the proportions of the windows and cells shows the aesthetic aspect of the structures as well as their harmony with their environs.

In the cell filling technique, there is no metal binder between wooden elements, and fixings are made using joint details. Therefore, they can be assembled and disassembled. There are quite a lot of examples that houses established on a land are disassembled and transported elsewhere where they are reestablished. (Photograph 23)

(Photograph 23) ÇAĞLAYAN Findikli – RİZE

Amulet infilling: This is the wall surface obtained by filling with stones of the cavities looking like amulets which are formed due to the diagonal wooden parts in façade composition. Amulet infilling system is a result of metal binders used instead of nail-free joints in the cell infilling system. Therefore, the building is no longer removable because the possibility of assembly and disassembly in cell infilling is not applicable. It is more convenient to think of amulet infilling technique as a simple and careless, easily applied system rather than a technical improvement, although it followed cell infilling technique. (Photograph 24)
Çakatura: This is the even simpler type of the annulet infilling façade technique. Props are placed in two directions against horizontal leads on the main and intermediary studs erected to the corners of horizontal ground sleepers. The façade is completed by filling the cavities between the short profile studs installed at close intervals, using tiny stones, just as in the annulet infilling technique, in order to form the façade surface after placement of main and intermediary bearing element. Corner studs are supported with props for horizontal leads. (Photograph 24)

(Photograph 25) ARHAVI - ARTEM

Mixed building system:

The term “Mixed Building” is in fact used for structures where block and carcass systems are used together. Basement walls do not effect this description. However, buildings where at least two of the block wood filling, cell filling, annulet filling, çakatura systems are used together can be included within the scope of “Mixed Building System”. (Photograph 26)
The most typical example of block-carcass systems are the wooden block pole-elevated (serender) structures with ground floor fixed on poles with props and vice versa. An example to this can be the wooden carcass stable and haylofts placed on a log block ground floor. Besides, mountain village houses surrounded at three sides with poled porch may also be included within the “Mixed Building System” class. (Photograph 27)

(Photograph 27) an example of wooden block pole-elevated structure
(Sketch by Prof. Cengiz EROZUN)
Formation of the roof:

Whatever the building system and external wall fillings are, climatic conditions play the most important role in formation of the roof of Eastern Black Sea region buildings. Eaves are made as wide as possible for protection of the walls from rain. Among the reasons of ventilation of the attic is protection of the structure from decaying due to caught moisture, and preventing cold air in winter and hot air in summer are not caught in the attic to provide temperature comfort in the rooms and other spaces, and to prevent some dry food materials kept in the attic from decay.

Roof surfaces may have two, three or four inclinations. These types of roofs which create different visual effects according to their inclinations are respectively called “saddle”, “Three Shoulders”, “Four Shoulders” in the locality. Although roof covers were covered with woods (Hartama) split with axe in the past, Turkish style tiles got common on the coastline afterwards.

Style and aesthetic:

The success of Eastern Black Sea architecture results from very old building knowledge and skills which passed from generation to generation for centuries within the framework of a master-apprentice relationship.

Wood processing skills are widespread over crafts, bridges, small mosques, houses and even pots and pans, chairs etc. several utensils. Stone utilization in architecture is rather secondary.

Building style and aesthetic reached the top thanks to extraordinary and smart inventions for detail solutions as a result of the necessities. The most characteristic properties of the local style can be viewed in “Cell Infilling” carcass structures. Cell infilling building technique is performed by placement of brock stones into rectangular cavities at dimensions of 17 cm x 22 cm or 20 cm x 25 cm. The fact that such detailing where the studs constituting the cavities and horizontal connections are connected to each other without use of nails or similar fixing elements from just above the foundation up to the roof resulted in the assembly-disassembly capability of the structures. Walls, which are intentionally left without being stuccoed in order not to conceal the mastery of detailing, depict the success of the masters who can create aesthetic while solving problems at the same time. (Photograph 28)
PROPERTIES OF CHESTNUT AS WOODEN BUILDING MATERIAL

Advantages:

1. It has a widespread production area in Turkey.
   Our regions where chestnut can be cultivated are Eastern and Western Black Sea Regions, Marmara region, Aegean Region and Mediterranean Region, including their midlands (where land elevation reaches 1500 meters from the coast toward midlands).

2. The time it requires to become timber is very short.
   Chestnut is a tree variety which can live for years. For example there a 600 years old chestnut in Bozdağ / Ödemiş in Aegean region with 10 m of periphery and 3 meters of diameter. It becomes timber in 20 years. Compared to pine, which can become timber in 80 years, we see that such period is shorter to 1/4. Therefore, its price should be 1/4 less compared to pine. It would enter the cheap trees league when it is cultivated as building material as many as required.

3. It is a light material.
   Its lightness and adequate strength is extremely convenient for buildings particularly on earthquake zones.
   For example, the unit volume weight he is 2400 kg/m3 for reinforced concrete is 600 kg/m3 for pine class timber, and 400 kg/m3 for chestnut class.
   Since its own weight among total loads is little, the weight it inflicts upon the foundations get less, and because it reduces construction profiles, it provides economy to the building in general.
   Chestnut is particularly the best building material for buildings to be applied on loose grounds.

4. It can be easily processed.
   Although it is included in the class of hard trees, it can be easily processed compared to other hard trees such as oak, chestnut, juniper, because of its fiber and bigger pores. Its production period can be shortened without necessity to developed tools and machinery. (Old masters could erect a house in two months by processing the chestnut with the tools they are able to carry.)

5. Easy repair.
   Decaying of a building made of chestnut tree is seen at places of water contact from time to time. Local process is handled without necessity to plan and volume changes when repair and reinforcement are necessary. Wooden elements which were worn out or damaged for various reasons can be easily replaced, or reinforced using additional elements.
   In case of stationary and mobile load required in rooted repairs, sections determined in view of the former loads can be increased with reinforcements.

6. No necessity of saturating chemical materials.
   Chestnut is within a natural chemical preservation medium in its environment. Besides, due to its preserving characteristics in its nature, it forms an outer surface. It becomes darker in color, and provides resistance against fungi and insects. Since poisonous preserving materials affect human life adversely, their use in building structures is inconvenient. Chestnut is the best endurable wooden material that can be used without necessity to any artificial preserving material.

7. Chestnut can breathe better compared to other trees.
   It is an easily breathing material due to its wooden fibers with more spaces. Since it requires no painting, it can clean the air of places because it can even breathe in enclosed areas for a long time.
8. It can be used for various purposes.
   Because of its resistance to water, insects and fungi, the structure, flooring, ceiling, wall linings, furniture etc. of the building from just above the ground up to the roofing can be made using the same material. It can be used along with other building materials such as stone, brick and sun-bricks, and for reinforcement of such structures. Besides, due to its resistance to water, it can be used for reinforcement of subfoundation grounds to remain within soil permanently.

9. Chestnut is a wood material which is not inflammable.
   Although wood is an easily flammable material as known, chestnut, indeed, is a poor inflammable. It is not ignited easily. Therefore, it cannot be used as wood. This is a certain advantage for structures.
   Resistance against collapse gains significance in the bearing frame materials of the wooden structure, rather than resistance to burning. Whatever the reason, the fire does not start in the bearing frame. That is, the furniture start to burn first, and then the bearing systems of the building are ignited. Tiny or thin cross-sections of the elements constituting the bearing frame accelerate inflaming. However, if the cross-section dimensions are big enough, then collapse would not occur in a short time. Risk of burning of the chestnut is less than other woods.

Disadvantages:

1. An employee is a treasure.

   Swelling in water of the chestnut like other trees, and its shrinkage when dried causes a change in its dimensions, even small. Sometimes there can be cracks or rotations at its cross-sections. Such disadvantages can be eliminated. If the humidity at the time of installation of the wood in enclosed spaces can be adjusted in a way to be balanced with the relative humidity of the air at such volume, no shrinkage would occur (N. Duman, S. Ökten, ITU MF:1981, SB2-8).

2. Its mechanical features vary.

   Just like other trees, the mechanical characteristics of the chestnut are not the same at each direction. Therefore, its resistance changes on the basis of fiber direction. (For example: Although the pressure security stress of the building timber in second class pine group in parallel direction with the fibers is 85 kg/cm², it is only 20 kg/cm² in perpendicular direction to the fibers). Although chestnut is a more advantageous material compared to pine due to its hardness and strength, when the traction security stresses are parallel to the fibers this is 85kg/cm², and 10 kg/cm² when perpendicular to the fibers. Such inconvenience can also be eliminated with detailing. Detailing necessary for articulations of various elements within the construction, joint points and supports should be prepared taking into consideration such features.

   As can be seen apparently, its disadvantages compared to its benefits as a building material are so few that can be ignored. Because there are possibilities to eliminate disadvantages, in countries where scientific data can be evaluated well, wooden material is used intensely particularly in house architecture.

USE OF WOOD IN DEVELOPED COUNTRIES TODAY, AND TURKEY
It is specified that the following countries use wood at the following proportions:
85-87 % in new houses constructed in England (Trade 1989),
75 % in new houses constructed in France (Bapk)
92.3 % in new houses constructed in America
Wood Use in Turkey

Such ratio is below 5% in new houses constructed in Turkey. Such ratio includes the building materials brought to Turkey by foreign investors and those materials imported from abroad and applied on those imported as ready-made (Çakir, S., 2000, Doctorate thesis).

Our country uses about 65% of forest consumption in construction sector, which is generally due to formwork manufacturing. The reason for this is that no higher buildings that 3 to 4 floors can be made in window carcass systems. However, as a result of a broad research conducted in city and town settlements throughout Turkey, it was found out that 92.8% of our society preferred houses with a small number of storeys and a garden (B.A.P.K. 1999).

Within the last semi-century, our people were compelled to accommodate in high reinforced concrete buildings in spite of such scientific data revealing positive effects on human life. Second half of the twentieth century is a period when wood as a material was substituted by concrete in our architecture. Not only wood was abandoned in the bearing structure, but also new searches even in woodwork, closets, furniture and similar furnishing elements, and metal (iron or aluminum), new-technology artificial materials such as plastic became preferable. In such a period of transition, not only wood systems, but also block or wood carcass reinforced mixed building systems that lasted for centuries using traditional building materials such as stone, brick and mud-brick were all eliminated.

Although today's technology provide the possibility of several and easy-to-use building materials, we know that whole world, particularly the developed countries did not give up wood, on the contrary, they increased its resistance with various absorption methods and by improving details, and still use it even to pass huge apertures using special beam systems. In our country which is an earthquake zone as a whole, wood building material, which was applied throughout the history and which can exhibit unique architectural features, was forgotten nearly entirely in 50 years. And within such period no lessons were taken from the damages caused by the earthquakes. The loss of lives and property on very large scale due to 17 August 1999 earthquakes brought up wooden structures again.

It is expressed by concerned scientists that population increase in Turkey will continue for further 30 years. A population increase of forty million is expected in our country, which is 90% earthquake zone.

Years since 1950's revealed that both the models of city planning and the building systems based on reinforced concrete have significant inconveniences. Merely the tendency of producing BUILDINGS RESISTANT TO EARTHQUAKE overrides since the last earthquakes, however, no same sensitiveness is shown to house designing where people can live happily and to utilization of the building materials that can make human life healthy. It is no arbitrary choice that in our traditional building production 75% wood is used. It is the experience of years and success of building mastery passing through generations if historical buildings in our country, with a settlement culture of twelve thousand years, could stand for centuries.

BLACK SEA HOUSES AS THE SOURCE OF INSPIRATION FOR OUR FUTURE

The CELL INFILLING type houses of the Eastern Black Sea region could be constructed using modular system by manual shaping of wood material, in periods when technology was not developed yet. The beams, studs, window sizes, door apertures of the wooden carcass building system named as FRAMING in the region could be based entirely on certain standardization. In period when technology was not available yet, wooden articulation details were solved with passage systems without use of any fixing element, and the buildings were made portable with capacities of assembly and disassembly. Houses, pole-elevated houses ( scrutiners), small mosques and similar structures can be disassembled from their former location and moved elsewhere where it will be reestablished.
Log houses, prefabricated wooden houses and similar systems brought to our country from abroad after the last earthquake, are all products of foreign culture. The space solutions of such houses do not fit the lifestyle of our society. Flats which were imposed on our society with the concrete building system at the beginning of 20th century are also a product of foreign culture. However, the house spaces and building systems used in production of such spaces by our people who know and use wood building material very well are far more higher-quality and advanced than the imported examples imposed on our people. The important thing is to investigate the past to reach new synthesis, and to dare forming data for new designs. When we can do that, we will start constructing our new wooden houses, and the process for creating new architectural assets being inspired from old solutions.
BIBLIOGRAPHY:


2. DOĞU KARADENİZ BÖLGESİ Bölgesel Gelişme- Şehirleşme ve Yerleşme Düzi Imar İskan Bk. Pl. ve İmar Genel Mld. Bölge Planlama Dairesi


6. ERUZUN, Ç.: "Ahşap kimlik bulduğu Doğu Karadeniz Mimarisi" Prof. Dr. Esat Suher Amına, İstanbul, 1998, Mimar Sinan Üniversitesi Yayınları


10. BAŞBAKANLIK AİLE PLANLAMA KURUMU (BAKP) "Türk Ailesinin Yaşadığı Mekanlara - Konulara İlişkin Eğilimler", Ankara, 1999


13. PHOTOGRAPHS by Prof. Dr. Cengiz ERUZUN

23